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Overview 

Timeline 
• Start: October 1, 2012 
• End:   Sept. 30, 2014 
• Percent complete:  

75% 
 
 
Budget 
• Voltage Fade project 

 

Barriers 
• Calendar/cycle life of lithium-

ion cells being developed for 
PHEV and EV batteries that 
meet or exceed DOE/USABC 
goals 

 
 
Partners 
• ORNL 
• NREL 
• ARL 
• JPL 



   
–LMR-NMC class of layered compounds : Best known cathode 
 option to date 
 
–* 250 mAhg-1 at high-charge voltages (4.7 – 2.0 V) 

•  Energies approach 950 Whkg-1 
•  Capacity stable over 1000s of cycles 
• Low rate capability and low tap density 
• Energy loss over cycling duration due to voltage fade 

 
–Need to solve structural and electrochemical performance   
 problems 
 
–Explore syntheses solutions towards VF-free cathode materials 
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Relevance 
• New cathode materials are required to improve the energy 

density of Li-ion cells for transportation technologies.   
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* Abraham et al. (electrochemistry diagnostics ES188) 
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LMR-NMC = xLi2MnO3(1-x)Li(Nix’MnyCoz)O2 

Schematic: Bareno et al. Chem. Mater. (2011) 

Li2MnO3 domains 

LiMO2 domains 

Croy et al. ES194 
 Iddir et al. ES193 
Key et al. ES187 
open literature   

* 

* 

* 

Initial state: Li-rich Mn-containing  
layered transition metal oxides: 
extra Li in the presence of  
Mn forms LiMn6 domains in TM layer 

TM layers; in-plane arrangement 

Structural model 
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* Abraham et al. (ES188) 

Voltage profile – electrochemical processes 

A 
B 

 Voltage profile features are strongly correlated with composition 
 Process A (Ni & Co redox); Process B (activation: Li removal from LiMn6 

domains in TM layer) 
 Post-activation: VF (voltage fade) is manifested with full window cycling 

D. Abraham et al. (Argonne 2013-2014)) 
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Structural issue in voltage fade 
 LiMO2, Li2MnO3, and spinel-Li0.5MO2 share the O3 type oxygen layer 

stacking 

 Significant proposed O-vacancy creation during activation 
 Initiates Mn-dominated cation movement 
 Stable intermediate cation dumbbell structure configuration created 

 Reversible and irreversible-type cation diffusion  
E. Lee et al. (Argonne 2013-2014)) 



Approach 
 • Study voltage fade mechanism 

– Apply knowledge to (1) composition and (2) structural 
design of cathode materials 

• Use theory to help guide syntheses approaches and 
decisions 

• Apply syntheses methods 
– Composition 
– pO2 atmosphere 
– Sol-gel and co-precipitation routes 

• Establish best synthetic route to probe chemistry 
– Cation substitution 
– Structural alterations 

• Use electrochemical voltage fade protocol for assessments 
 7 
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• Coating assessment 
 

• Composition variance  
• Explore multiple synthesis routes 

– Firing Atmosphere used 
– Synthetic precursor effect 
– Doping/substitution 

• Continue synthesis of materials 
  Focus: (1) structures 
    (2) high-voltage redox reactions 
    (3) linking theory/modeling to 
     composition 

Completed: 
 no-go 
Completed 
Completed 
Completed 
Completed 
Completed 
On-going 

Milestones of FY14 



Coatings: effect of AlF3 coating on the voltage fade of 
Li1.2Ni0.175Mn0.525Co0.1O2 
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Pristine 

AlF3 coated 

A. Abouimrane et al. (Argonne – 2013)  

Pristine material: average voltage 

AlF3 coated material: average voltage 

Pristine material: average voltage 

AlF3 coated material: average voltage 

AlF3 coated 

Pristine 

 Capacity retention better with AlF3 coatings; 
but VF not curtailed 

 Coatings: determined as no-go in FY’14 
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Li2MnO3 domains –preferential formation during 
LMR-NMC synthesis 

 Li/Ni+Mn+Co=1.5 
 ~120oC, Nix’MnyCoz(OH)2 decomposition 

 ~400oC, forms layered structure 
 ~650oC, Li2CO3 decomposes: initiates Li2MnO3 

domain formation 
Li2MnO3-domain 

C.-K. Lin and Z. Chen (Argonne) - 2014 

Synthetically we must take into account strong tendency to make LiMn6 units in TM plane 
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A. Vu et al. (Argonne 2013-2014)) 
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Result: composition effect– Co/Mn ratio 
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A. Vu et al. (Argonne 2013-2014)) 
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 Pechini process used to form Li-containing precursor materials 
 Precursor material calcined in 100% oxygen shows voltage fade 

Synthesis atmosphere: effect of pO2 

Targeted nominal composition:  0.5Li2MnO30.5Li[Ni0.375Mn0.375Co0.25]O2 
layered notation: Li1.2Ni0.15Mn0.55Co0.1O2 

A. Vu et al. (Argonne 2013-2014)) 
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Sol-Gel synthesis route 
 

 Successful synthesis of HE5050 (Toda) via sol-gel reactions 
 Expected capacity obtained 
 Good syntheses method for exploring substitution chemistry 

 

Sol-gel A 

Sol-gel B 

Sol-gel C 

Li1.2Ni0.15Mn0.55Co0.1O2 

Initial formation cycle: 10 mA/g 
Following cycles: 20 mA/g 
Discharge 

10 mA/g 

E.Lee et al. (Argonne 2013-2014)) 
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Cation-substituted (Al, Ga, Fe) Electrochemistry 
  

Stable capacities ~ 250 mAhg-1 –> similar Li quantity cycled in samples 
E. Lee et al. (Argonne 2013-2014)) 
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Al, Ga, Fe-substituted 
Li1.2Ni0.15Mn0.55Co0.1O2 

Li[(NMC)1-y(X)y]O2 
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 Spectator cations (Al & Ga)- no VF effect  
 Substituted Fe cation (redox active) – no VF effect 

 surmise Fe migration to surface during 
synthesis 

 Substituted Cr cation (redox active)  
 activation plateau altered  
 VF not retarded 

E. Lee et al. (Argonne 2013-2014)) 



 

Order of Li-addition in Sol-gel synthesis 

M(OR)n 
M = Mn, Ni, Co 

M(OR)n 
M = Li, Mn, Ni, Co 

MOx 
M = Li, Mn, Ni, Co 

LiMO2 • Li2MnO3 • LiMn2O4 

MOx 
M = Mn, Ni, Co 

400 oC, 2h 

400 oC, 2h 900 oC, 8 h 

900 oC, 8 h 

Li2CO3 LiMO2 • Li2MnO3 
Layered-Layered= “LL” 

Layered-Layered-Spinel = “LLS” 

LL vs. LLS of same nominal composition: Li1.2Ni0.15Mn0.55Co0.1O2 
 

Li(NO3) 

 Phase distribution in product depends on when Li is introduced in the synthetic process 
 Possible synthetic approach to structure control; VF not mitigated however in this example 
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17 M. Slater et al. (Argonne 2013-2014)) 



Summary – Synthetic approaches to VF-free materials 
• As-prepared Li-rich/Mn-rich synthesized materials strongly form Li2MnO3 domains 

• LiMn6 units in TM-plane 

• Composition 
• Variance of Li, Ni, Mn and Co – no effect 
• Voltage fade rate can be changed by as much as ~36% 
• Percentage of Co increases, then VF increases 

• Method of synthesis 
• Pechini, Sol-Gel and Co-precip. routes evaluated – no effect 
• Oxygen firing – no effect on VF 
• Sol-Gel reactions 

• Cycling performance/features equivalent to commercial materials 
• Successful cation doping/substitutions – Al, Ga, Fe, Cr 

• Spectators and redox cations 
• No effect on VF – rate of change affected only 

– Order of Li addition 
• Can create spinel component in as-prepared material 
• Structural control may be possible – but no effect on VF in example herein 
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 Various synthetic approaches did not stop voltage fade  
 Arresting voltage fade in these class of Li-rich Mn-rich ‘layered▪layered’ composites 
     appears unobtainable 
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Remaining Challenges and Barriers 

 
 
 
 

 

 

• Can we find a new synthesis route not yet used that will stop 
voltage fade 

• Must determine location of Li, TM cations in LMR-NMC 
composites to direct syntheses going forward 
– Total understanding of structural changes of LMR-NMC during first 

charge (‘activation’ plateau) 
– Total understanding of TM cation movements during cycling 

• Must prove charge compensation in these LMR-NMC cathode 
materials 
– May lead to new novel synthesis approaches 
– May lead to totally new materials for cathodes 

 



20 

Future Plans 

 
• Optimize Li, and TM cation distribution in domains 

– Control domain size? 
• Try glycine-nitrate combustion reaction  

– Is a solid solution possible? 
• Quenching with compositions that show lowest voltage fade rate 

– Control movement of TM cations in Li-rich layered structures at high-states of 
charge 
• Combination of dopants 
• Use redox active cations – replace Mn with Ru 
• Incorporate Ti – more covalency imparted to the structure  

• Lower initial Li2MnO3 component in ‘layered-layered’ composite needed 
– Evaluate other structural components like spinel in composite (i.e. LLS) 

• Finish off the synthesis plans in the project wrap-up 
– Provide suggestions to the voltage fade (high-voltage/high energy team) going 

forward into next year’s project 
– Can we stop condensation of structure – vacancy distribution; make material 

more ‘flexible’ 
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Responses to Previous Year Reviewers’ Comments 

• Majority of comments were favorable and do not require a response 
• Reviewer 4: Conduct investigation on temperature effect on VF 

– Response:  this work is outside the scope of a synthetic study 
• Reviewer 4: Add more analytical resources; both outside and inside 

Argonne 
– Response:  this task is a synthetic effort  

• Reviewer 3: Evaluate Cr, Mo; also evaluate Co effect on layering 
– Response:  Cr was substituted into structure –alterations occurred on 

activation plateau, but ultimately no VF was stopped in these materials; Mo 
was not looked at; Co changes were looked at – VF not stopped, but rate of 
changed altered 

• Reviewer 4: additional resources needed 
– Response: the VF team redirected ANL individuals to assist in focused 

synthesis efforts   



Publications and Presentations 
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• 225th ECS meeting, May 11-15, 2014, Orlando, FL 
 Title: Structure and electrochemistry of cation substituted “layered-layered 
 composite” cathode materials for Li-ion batteries, Oral presentation  
• The 17th International Meeting on Lithium Batteries, June 10-14, 2014, Como, Italy 
 Title: P2 layered Na transition metal oxides: A synthetic precursor to new O2 
 xLi2MnO3▪(1-x)LiMO2 ion exchanged ‘layered-layered’ cathode materials. 
 Poster presentation 
• “Li-Ion Composite Cathode Materials: Influence of Initial Nanophase Distribution 

on Structural Evolution During Cycling,” poster presentation, M. Slater, E. Lee, and 
C. Johnson, Gordon Research Conference: Batteries, San Buenaventura, CA, March 
2014. 

• “Comparison of Voltage Fade in Two Different Polymorphs of 
6Li1.2Mn0.55Co0.1Ni0.15O2,” poster presentation, M. D. Slater and C. S. Johnson, 
Advanced Lithium Batteries for Automobile Applications 6, Argonne, IL, September 
2013. 

• Eungje Lee et al., “Effect of Cation (Al or Ga) substitution on voltage fade in 
Li1.2Ni0.15Mn0.55Co0.1O2 cathode for Li-ion batteries,” (submitted) 
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Technical Back-Up Slides 
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0.5Li2MnO3•0.5LiCoO2 0.5Li2RuO3•0.5LiCoO2 

Li2M’O3-LiMO2 (M’ = Mn vs. Ru) 

Li2RuO3 based sample (IR-free result) does not show typical voltage fade as in Li2MnO3 based  
materials, in spite of capacity fade. 

Ruthenium 
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X=0.05 X=0.1 X=0.2 X=0.4 
V0.05 

(a) (b) 

Fig. 2. V dopant: (a) photo of the products, and (b) 
coin cell voltage profiles 

Vanadium 

Li1.2Ni0.15Mn0.55-xCo0.1VxO2 


